算数で大切にしたい問いかけ

どの教科にも単元にかかわらず、共通の大切にしたい視点があります。今回は算数について考えてみます。

算数ではいろいろな計算が出てきますが、共通して押さえておきたいのが、「何」が「いくつ」あるかという問いかけです。
たとえば、位取り記数法では、32は10が3つあり、(1が)2あると考えます。小数も0.4は0.1が4つあると考えます。
同様に分数も2/3は1/3が2つあると考えます。比も基準となるものがいくつあるかが基本です。
面積や体積も単位量がいくつあるかです。
このことから、かけ算を足し算の繰り返しではなく、「1つあたりのいくつ分」と定義するようになったのです。

このことを意識すると、子どもへの問いかけも非常に明解になります。
たとえば、0.3×4=0.12としてしまう子どもがいたとします。3×4を計算して、小数点をつけると考えたのです。意味を考えずに手順を覚えようとする子どもがよくやる間違いです。このとき、「0.3は何がいくつ」「3×4=12で何が12」と問いかけることで0.1が12と気づき、間違いが正されます。

この視点で教科書を眺めてみると、基本的な考え方がこの問いかけで明確になることに気づくと思います。算数の教材研究をするときに「何」が「いくつ」あるという問いかけを意識していただけたらと思います。

数学の授業の視点を考える

先日、来年行われる算数・数学のセミナーの運営委員会に参加しました。私は、中学校のグループで当日の実習で扱う題材について担当の先生方とお話をさせていただきました。担当の先生方はどなたも力のある方ばかりです。にもかかわらず、当日参加される先生方にとって少しでもよい内容の実習ができるように、勉強をしておこうと集まっているのです。手弁当の会にもかかわらずこの真摯な姿勢には本当に頭が下がります。

算数・数学の授業を見せていただいて最近強く感じるのが、問題を解くこと、解けるようにすることばかりが意識され、解き方の手順を教えることが授業の中心となっていることです。なぜこの手順で解けるのか、この手順が最良なのかといったことを考えることがされていません。特に中学校では、解き方を習っていない問題に出会ったときに解ける力をつけているのか疑問に思うことがよくあります。数学が知識だけを問う教科になってしまっているのです。

この日は、平方根の計算に関して、「√の中の数をできるだけ小さくなるように、有理数を外に出して積の形にして簡単にする」ことは、何の意味があるのかといったことを考えること。また、√×√の形の計算は、このことを使って有理数を外に出してから掛け算して、再度有理数を外に出すように教えますが、手順としては掛け算をしてから有理数を外に出す方が簡単です。なのに、先に有理数を外に出すのはなぜかと理由を考えること。こういうことが大切であることを話させていただきました。そうすることが数学的な考え方を身につけることにつながっていきます。

今回、簡単にするということが、数学のあらゆる場面で求められる考え方であり、その意味を各場面で意識することで問題解決の根本を支える力がつくことを、平方根から出発して、あらためて考えていただきました。教材を点で見るのではなく、数学という学問の底に共通して流れるものを意識して見ることの大切さを当日伝えていただければと思います。
        1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31